
OU-A25 284 ON THE QUNTIAI Ej 0 NAYS IUID FOW IN 1/
PHYSIOLOGIA TUBEO U IW ICONOF N UNIVMO ION
MUTHEMATIC RESEONCH CENTER H wl NE IDEC 82

UNLSSFE RCTREEEEEEEEE' C_ 0 1 1/G6/6. I
EEEshmhEEEEohI

EohEEEEohhEEEI
EhhEEmhohEmhEI
EEEEohmhmhhmhI
EhImmmhIomL



;r

ma 12 12,.2

li--

11111.25 LA1 1=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1I963-A

7



NRC Technical Siumary Report #*2456

ON THE QUANTITATIVE ANALYSIS
OF LIQUID FL-OW

IN PHYSIOLOGICAL TUBES

" ~ H. Winet

Mathematics Research Center
University of Wisconsin- Madison
610 Walnut Street
Madison, Wisconsin 53706

>_December 1982 FD2TiC
(Received October 8, 1982) -I.tT

F Approved for public release
Distribution unlimited

sponsored by

U. S. Army Research Office and National Institutes of Health
p. 0. Box 12211 Bethesda, Maryland 20205'I Research Triangle Park
North Carolina 27709

23 &~023, 122

or If



UNIVERSITY OF WISCONSIN - MADISON Pecr
MATHEMATICS RESEARCH CENTER

ON THE QUANTITATIVE ANALYSIS OF LIQUID FLOW, . -

IN PHYSIOLOGICAL TUBES

H. Winet

Technical Summary Report #2456 "

December 1982

ABSTRACT

We review three benchmark quantitative models for flow generation

by physiological tube pumps. In each case significant differences

between model predictions and tube behavior was emphasized. In order

to close these gaps both modeler and Physiologist (often the same

investigator) need to find paths which can grow to bridges. The

modeler must develop more exact solutions to provide Physiologists with

plug-in equations which will accept measurements. The Physiologist

must make the kind of measurements which can be reasonably tested by a

meaningful model. The measurements which have been featured in this

review are pressure, viscosity and geometry--'- wkLre geometry varies

with time, kinematic data. A number of diagnostic marker formulas

have been presented as stepping stones to modeling. These include

e slenderness etc. which translate physiological data into

indicators for modeling directions
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ON ThE QUANTITATIVE ANALYSIS OF LIQUID FLOW IN PHYSIOLOGICAL TUBESF*
H. Winet

I. INTRODUCTION: The Fluid Mechanical Approach to Tube Flow

Modeling.

Data gathered from measurements of contraction, pumping,

viscosity, pressure and liquid flow in the various physiological

tubes maybe mapped onto numerous graphs without concern for

their physical meaning. In addition to such empirical modeling

these same data may be plugged into equations which represent mo-

dels with a sound basis in Mechanics. This review presents these

fundamental equations as plug-in forms which have been obtained

by simplification of the fluid mechanical versions of Newton's

laws of motion.

We also attempt to sketch how the plug-in forms are derived,

what they mean and why they are or are not close to predicting our

observations. The terminology is meant to be understood by physi-

ologists with only sufficient training to know heuristically what

mathematical integration is about. Here are some modeling defini-

tions which we keep in mind and which will help orient the reader:

Empirical model A mathematical equation of the form y = f(x,t)
which represents an observed data relationship. Empirical

models need have no physical meaning. e.g. Growth curve e-

quations.

Experimental model A physical system which functions like another
physical system sufficiently to give valid insight to the op-

erations of the latter. e.g. squid axon.

Theoretical model A mathematical equation based upon the laws of

Physics. In mechanics all theoretical models are aeveloped

from F = ma. They may be transformed at three levels into e-

University of Southern California School of Medicine, University of
Wisconsin Mathematics Research Center and California Institute of
Technology Division of Engineering and Applied Science.
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quations which generate numbers.

Level 1-- ANALYTICAL SOLUTION/MODEL. An equation which results

by solving F=ma without introducing any constants or para-

meters other than zero. The most general form of solu-

tion.

Level 2-- EXACT SOLUTION/ODEL. An equation which results by

solving F--ma without introducing any constants or para-

meters other than those with delineated physical meaning.

Level 3-- NUMERICAL SOLUTION/HODLL. An equation which results

by solving F--ma after introducing arbitrary constants

or parameters which may have no physical meaning. In

current application, a computer-intensive solution.

Why lump all body tubes together in one review when their

physiological functions differ so greatly? Because fluid mechani-

cally their function is the same; to transport liquids (and in

some cases solids) and an understanding of how the pump(s) in any

tube generate bulk flow gives us insight to the mechanics of other

tube pumps. Such understanding develops from the construction of

models from the fundamental equation of motion for all liquids.

This funaamental equation is a form of Newton's Second Law (F=ma)

the Navier-Stokes (N-S) equation which takes the mathematical form

for an infinitesimal increment--call it a 'particle'--of fluid

dmvdF = dF + oF + dFv = dt (1)
g p V d

where the symbol 1dF' (with or without subsscript) represents that

amount of force acting on any particle of fluid and dmv/dt the

change in velocity and mass with time of that particle as a result

of the accelerations from all of the forces cited.

2



For physiological fluid flows the important forces are gra-

vity Fg, that due to pressure Fp and that due to viscous drag Fv -

The simple appearance of (1) is deceiving. When the right side is

expanded to show the acceleration imposed by each force on a fluid

particle, it is seen that even if we assume the particle mass re-

mains constant, some 16 partial differential equation terms are

requirea to account for three-aimensional effects. When the left

side (the three uF terms) is similarly expanded, over 30 partial

differential terms appear because we have to account not only for

three-dimensional effects but for the difference between forces

ana stresses (force/unit area) such as pressure and viscous drag

as well. The quantitative theoretical model is spatially 'solved'

when we add all these incremental effects together to describe the

motion of a volume of fluid during an increment of time. This ad-

dition requires mathematical integration of (1) in all three di-

mensions. Unfortunately, no one has been able to perform such an

integration and the only hope for obtaining a useful model which

will predict flow in a given tube is to simplify the N-S equation

sufficiently to make it solvable (able to be integrated).

Accordingly, Applied Mathematicians and Scientific Lngineers

who develop fluid mechanical models seek to convert as many of the

partial differential terms into constants (or at least ordinary

differentials) as possible. But the decision as to which terms

may be simplified (i.e. "linearized") without loss of physiologi-

cal significance must be made by biologically-oriented scientists

who are familiar with the pumps and tubes of interest. It is the

Physiologist who must supply the critical data by utilizing expe-

3
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rimental techniques which do not themselves alter the essential

flow characteristics. The interdisciplinary team approach which

results from such cooperation provides the greatest potential for

the development of realistic theoretical models for physiological

tube flow dynamics. Thus, for an investment of the expertise

needed to obtain valid data, the Physiologist earns models which

can be used to predict fluid propulsion for given tube and pump mo-

tions.

The single most effective tool for simplifying the N-S equa-

tions is the Reynolds number (Re) which is a dimensionless para-

meter comparing inertial stresses--characterized by mass, size and

speed--with viscous stresses. It exists in two main forms, a

translatory form obtained for fluid far from the direct influence

of pump oscillations

R = inertial stresses pUr (2)viscous stresses

and an oscillatory form obtained for fluid under the direct influ-

ence of pump oscillations

Ref = (3)

where V is fluid density (average density if m varies), f the a-

verage fluid velocity, r the tube radius, f the pump oscillation

frequency, and il the fluid viscosity. The value of Re does not

have to be known precisely, as it is only a guide which indicates

to the modeler which terms may be dropped from the N-S equation.

4



An example of its relationship to flow is presented in Table 1 which

applies to flow in a rigid tube due to an unspecified pump.

Table 1

R Range Type of Simplified form

et Flow of N-S Equation

R e 2100 laminar Stokes

2100 . Ret J_ 4000 unsteady Darcy-Weisbach
(transitional)

4000 /_ Ret turbulent Reynolds

II. The classification of Physiological tube flows

"Tube flows" is one class of "Internal flows" which is de-

finea as any bulk flow within a container whose walls do not trans-

late with the liquid. A tube is a container open at each end which

is longer than wide, generally speaking, by a slenderness ratio

L/2r of at least 0.03 Ret for laminar flow (see below)and 0.7Ret
0 2 5

for turbulent flow (Caro et al, 1978).

We distinguish three classes of tube flows according to their

pumps as diagrammed in Figure 1. The two most noteworthy features

in each diagram are the direction of the pressure gradient (Is

pressure higher upstream or downstream?) and the curvature of the

flow velocity profile (the dashed line which is a plot of fluid

particle velocity as a function of distance from the endothelium).

The simplest flow shown is pulsatile flow which is generated by

an upstream valved pump, the heart, and characterized by an up-

stream pressure which is higher than the downstream pressure and

a flow velocity profile with no reflux (syn.: retropulsion). The

5



Pumping in Biological Tubes
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FIGURE 1.

Three classes of physiological tube propulsion. a. Peristaltic/
Segmental or Propagativ/Stationary constriction pumping includes
active deformation of tube walls and considerable lumen occlusion.
Flow velocity profiles show substantial reflux and downstream
pressure P2 always exceeds upstream pressure P1. b. Ciliary
pumping is developed by arrays of oscillating slender bodies attach-
ed to the lumen wall. Fluid particle speeds are highest near the
ciliary tips and flow velocity profiles show reflux as a rule
because P 7 P- c. Pulsatile flow is generated by an upstream
valved pulp which creates a P 7 P . The resulting flow velocity
profile rarely shows reflux wAere hlow is steady and the walls
contribut to propulsion primarily passively, i.e. through their
elastic properties. L. = sublayer thickness.



next simplest is ciliary flow which is generated by an array of

pumps lining the endothelium and characterized by ai upstream

pressure which is lower than the downstream pressure and a flow

velocity profile showing reflux. The most complex flows are the

peristaltic/segmental types (syn.:.propagative/stationary con-

strictions (Macagno and Christensen, 1980)) which are generated

by tube constrictions which may (peristaltic) or may not (segmen-

tal) be propagated. Peristaltic flows are characterized by an up-

stream pressure which is lower than the downstream pressure and a

flow velocity profile showing reflux. It should be noted that

these flow profiles are idealized in order to be instructive; so

it is not surprising to an experienced modeler that when a peris-

taltic wave passing over the antrum of the stomach encounters a

wide open pylorus, the flow velocity profile of the chyme will

show virtually no reflux.

The distribution of these flows according to the organs to

which they contribute and the contractile tissue of the pump are

summarized in Table 2. We have omitted cytoplasmic flows (such

as occurs in axons) and filtration because the former has the un-

usual added quality of being at least partly generated by the

fluid itself and the latter is an extension of pulsatile flow al-

though as we shall show it interacts with other pumps in what we

call "combination pumps".

7
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Table 2

Pump Contractile Tissue
Cardiac Ciliated Skeletal Smooth

System Muscle Epithelium Muscle Muscle

CNS(Ventricles) - C
Circulatory*
heart Pu/P(?) -

Macrocirculation,
Precapillary Pu - - +

Microcirculation Pu - - Sph.
Macrocirculation,

Postcapillary Pu - Squeeze
Digestive
Esophagus - - P
Stomach - - P
Small Bowel - - - S/P
Large Bowel - - Sph. S/P

Excretory - - Sph. P
Lungs(non-mucus
unless plugs) - C -

Reproductive
Cervix - C - S/P(?)
Uterus - C - S/P
Oviduct - C - S/P(?)
Efferent Ducts - C - S/P(?)
Epididymis - - - S/P(?)
Vas Deferens - - - S/P(?)

*Flow in any blood vessels feeding muscle is affected by cont-
raction of the muscle. C - Ciliary, P = Peristaltic, Pu =
Pulsatile, S = Segmental, Sph. = in sphincters, + = Propulsive
effect through 'elastic' recoil

Upon considering the widespread occurence of contractile tis-

sue and the features emphasized in Figure 1 and Table 2, one is

struck by the variety of forms these tissues have assumed to make

liquids flow and the variety of mechanisms employed to create a

pressure gradient which will maintain this flow.

III. The Poiseuille (Hagenbach) equation as a reference model

for all physiological flows.

In 1841 J.L. Poiseuille, a physician with a talent for per-

8
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forming experiments, published an empirical equation for volumet-

ric flow rate (Q) in a cylindrical tube as a function of pressure

head and tube diameter. The equation contained no explicit terms

for viscous forces. But in spite of this omission and the fact

that it was not until 1860 that E. Hagenbach (and, independently,

F. Neuman) obtained a theoretical form of the model, it is the

theoretical equation which today bears Poiseuille's name (Rouse

and Ince, 1957)

4
Q nr VP (4)

81

where VP, often written AP/L is the pressure gradient along the

tube axis. The hagenbach model was obtained by direct integration

of the N-S equation after first making the following simplifica-

tions (fluid mechanics synonyms in parentheses):

1. Ret is small enough so that the fluid is stable.

2. density F is constant (incompressibility).
3. The flow pattern does not change with time (steadi-
ness)
4. viscosity 1 is constant (Newtonian flow). Non-Newton-
ian flow means that the rate of flow (strain) is not lin-
early proportional to the amount of shear (stress) ap-
plied. Viscosity is the slope of the curve relating
fluid strain to stress.
5. The flow pattern does not change with position along
the tube axis (negligible entrance or exit effects).
6. Fluid particles are so close to one another that they
are not distinguishable as individual (continuity).
7. The fluid particles touching the tube wall are stuck
to it (the no-slip boundary condition).
8. The tube walls do not deform (the rigid boundary con-
dition).
9. Gravitational influences are negligible.

The experienced Physiologist can call to mind violations of each

of these basic assumptions while at the same time marveling at how

9



well the Poiseuille model has predicted flow in many circulatory

tubes. The simplified form of the N-S equation resulting from

these assumptions has only 9 partial differential terms on the

right side and 12 (non-linear and second order) on the left ana

is known as the Stokes equation. At the time of Hagenbach this

equation was still not integrable so he added the final assumption

that

10. all translating fluid particles moved in the same di-
rection (laminar flow).

He then obtained the "one-dimensional" Stokes equation for a tube

rdUdP Yj a --r
=P (5)

dx r d r

an ordinary aifferential equation (of second order) with U the

fluid particle velocity in the axial airection x which is the only

flow dimension.

One can imagine aP/dx becoming VP, aU becoming Q and ar fil-

ling in the essential contributions of tube geometry 'rf r 4/8) upon

complete integration of (5). The most critical tests for tube flow

models ao not, however, require complete integration of the equa-

tion of motion. If flow is laminar, integration in one dimension

gives the equation for the flow velocity profile:

VP(r2 - r 2

U(ri) = 41 (6)

where ri is any distance from the tube axis. Flow velocity pro-

files are more discriminating tests of model validity because they

10
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give a more aetailed picture of the flow pattern than the single

value Q. A comparison of measured with theoretical flow velocity

profiles, accordingly, is commonly the best test of a model.

The theoretical models for ciliary and peristaltic flows have

to develop along similar paths because the rules of physical ana-

lysis are quite strict. The fact that their pumps reside in the

tube wall leads us to expect that their flow velocity profiles are

more complicated and they are. But the basic model structure per-

sists:

VELOCITY IS DIRECTLY PROPORTIONAL TO PRESSURE GRADIENT AND

TUBE CALIBER AND INVERSELY PROPORTIONAL TO VISCOSITY

or U(r i) = K VP f(r

where f(ri) is some geometric function and K a proportionality

constant.

This pattern is readily evident in the Blake (1973) model for

ciliary flow:

VP (r2 - r.)

U(ri) = U - 2 1 (7)

where Um is the maximum fluid particle velocity, and it is discer-

nable after careful examination of the Shen (1976) model for peri-

staltic flow:

APTRe M M2

U(0) c . - (1 - )+ 2(l (8)TLP cpM 2 2J

11
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where U T(0) = average fluid velocity along the axis (0) over oneTi
wave period T

= average pressure change over one period
Cp= peristaltic wave velocity

1 = 1/(I - 02)1.5

M2 = (I + 1.502)/(1 - 02)3.5 with 0 = 1 - a/2r the occlusion

ratio
and a = tube caliber at the constriction.

The viscosity term is hidden, of course, in the Re denominator.

In this equation the need for profile restriction to the axis and

velocity averaging is dictated by the changing flow directions

during each wave cycle.

The in vivo mechanical conditions of most physiological tube

flows seem a far cry from the flows represented by these three mo-

dels. Yet each can claim some predictive success in spite of its

simplicity. To be sure, more complex models will be necessary for

more accurate predictions of flow in such vessels as the heart,

stomach and brain ependyma, but they will not result from a return

to the full N-S equation and application of it directly to the

tube in question. Rather, they will result from step-by-step

complication of the simple models without losing the umbilicus

to physical reality--the rules of physical analysis. The direc-

tion of these complications must be determined by a pooling of

the expertise of Physiologists and Fluid Mechanicists. The for-

mer will indicate which part of the model must be improved and

the latter will perform the improvements made possible by the la-

test advances in Applied Mathematics.

In the following sections we shall summarize the success of

12
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the three quantitative theoretical tube flow models by comparing

predicted with measurea flow velocity profiles where possible.

For those instances where significant disagreement exists we shall

attempt to indicate where the model must be complicated to improve

its accuracy. As the reader may anticipate, the improvements will

be directed toward the form of VP, I or f(ri).

IV. Pulsatile Flow

The field of cardiovascular fluid dynamics was active before

the work of Poiseuille and the amount of data gathered to date is

impressive (see for example Caro et al, 1978). Yet flow velocity

profiles in vivo have been obtained only within the last 20 years

(Bergel and Schultz, 1971) and these have been limited to the aor-

ta. Nevertheless, the data so far accumulated provide ample ba-

ses for pinpointing specific model needs.

The circulatory system may be divided into four fluid dynami-

cal sections in terms of the relative affect of pressure, viscosi-

ty and geometry on flow in each:

1. heart flow-- Two parallel pumps

a. venous-to-pulmonary segment

b. pulmonary-to-aorta segment

2. Aorta-arterial flow-- Output macrocirculation

3. Arteriolar-capillary-venular flow-- Microcirculation

4. Venous flow-- Input macrocirculation

A. Heart flow

The heart may be thought of as two check valve pumps in pa-

rallel as indicated in Figure 2. While the two pumps are in fact

in contact and not strictly mechanically independent, they are

sufficiently separated by microcirculation to be modeled indepen-

13
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dently. The first, a two-valve pump propels blood into the pulmo-

nary circulation at a pressure which oscillates between 1.17x103

and 3.12x103 N m-2 . The second, a three-valve pump propels blood

into the systemic circulation at a pressure which oscillates bet-

4 4 -2ween 1.04x10 and 1.56xi0 N m- . The movements of the ventricu-

lar walls suggest peristalsis-like waves and a recent careful ana-

lysis of these movements by Klausner et al (1982) lends weight to

this suggestion. Atrial contractions, however, are much less

wavelike. The heart pumps are the only components of the circu-

latory system in which the downstream pressure is higher than the

upstream pressure. It is of course the pressure-generating ener-

gy of cardiac muscle that is dissipated by viscous stresses to

yield the pressure gradient of blood flow.

Since the tube walls of the heart do deform, assumption num-

ber 8 for the development of the Poiseuille model is violated.

Moreover, the speed of blood flow varies at different points in

the heart but can exceed 100cm/sec and give Reynolds numbers (see

Table 3) for which we would expect non-laminar flow (see Table 1).

There is turbulence in the heart but mainly around the valves where

vortex flow (a doughnut of fluid which flows through the doughnut

hole and around the outer rim) has been observed. Its prediction,

however, appears to be more dependable if the non-dimensional para-

meter

S Lv fLy
r =- = (9)

UmT Um

the Strouhal number(= 'reduced frequency') is used (Lee and Tal-

bot, 1979) because laminar flow has been observed near the aortic

15
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FIGURE 3

Net flow velocity profiles along the aorta as measured
by Schultz et al (1949). Each graph shows the profile
of mean velocities relative to the center-line mean
velocity.
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valve at Re values above 4300 (Schultz et al, 1969) and Sr is a

more direct measure of unsteadiness. Here Um is axial velocity

of the blood, Lv is valve length and T is cardiac cycle period.

If Sr L0.01 quasi-steadiness may be assumed. If Sr 7 0.01, flow

is unsteady and regurgitation (turbulence) may appear at relative-

ly small values of Re. There are also geometric violations of the

simplifying conditions. Given its Re, it is difficult to call e-

ven the longest chamber of the heart, the left ventricle, a tube

because its slenderness ratio of about 6 (11.5cm/2cm) is just bare-

ly that required (0.7x45000.25 = about 6) to escape entrance/exit

effects and when its flow gives a Re = 8000 it is too short. Thus

we have violations of conditions 1, 3, 5, 8 and 10 in the pump

and cannot reasonably expect the Stokes equation or the Poiseuille

model to apply.

H. Output macrocirculation

1. Pressure effects

Net flow velocity profiles along the aorta show an increasing

tendency toward the quaaratic form predicted by the Poiseuille e-

quation with aistance from the aortic valve as shown in Figure 3.

It will be noted that each profile is an average because the pres-

sure wave will enhance or reduce instantaneous particle transla-

tion at a point depending on which part of the wave is passing.

The relationship between the pressure waves and net particle mo-

tion must, consequently, be accomodated in any accurate model.

a. The Womersley parameter

When blood exits the aortic valve its R is above 4500 and
e

is turbulent but the turbulence does not spread beyond the imme-

18
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4diate vicinity of the aortic valve unless

(a) the aortic walls are abnormally rough

(b) the lumen is abnormally narrowed (stenosis)
(c) there are projections into the lumen
(d) red blood cells are abnormally rigid
(e) hematocrit is abnormally low

However, Ret ignores the pulsatile nature of blood flow and thus

must be replaced by a form of Ref. The one used in cardiovascular

analysis is the Womersley parameter

rf (10)

If c~. 1 then Poiseuille flow exists. If 07 4 then an unsteady

or oscillatory component must be included in the model for flow.

b. The propagating pressure wave

The physical source of the oscillatory component is the heart

which sends out a pressure wave at an f = 1.1 hz. If the blood

vessel were rigid this wave would be transmitted immediately

through the incompressible blood. The existence of a travelling

pulse wave, therefore, is evidence of a flexible tube and when a

pressure pulse reaches a given axial position xi, r will increase.

The speed of this increase and the recoil following passage of

the pulse have a profound influence on the flow velocity profile

at xi. As r is increasing Uxi (axial flow at xi) decreases be-

cause fluid is moving radially (Ur) i.e. toward the wall. Con-

versely, as r decreases Uxi increases because the trailing end of

the recoil wave is increasing upstream P. The calculation of the

changes in Uxi over one pulse cycle (Uxi(t)) would be relatively

easy and if plotted would follow a wave form similar to but out

of phase with the pulse wave by a constant amount if the vessel
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were purely elastic. Moreover, when small amplitude waves are im-

posed artificially on an arterial segment, as they travel down-

stream their amplitude decreases much faster than in a purely elas-

tic tube (Caro et al, 1978). A purely elastic solid obeys Hooke's

law (Stress = E x Strain) where E is the elastic coefficient or

Young's modulus. This equation has the same form as Newton's law

for fluids (where I replaces E). Combining Hooke's law with the

zeroth law of Laplace--P =TAw/r--where &w is the wall thickness

and"* is tension, and following its change with time gives a meas-

ure of pulse wave velocity

Co UK (11)
!p r

known as the Moens-Korteweg equation (although it was derived ori-

ginally by T. Young in 1808).

Blood vessels are, of course, non-Hookean solids as E is not

constant during the stretch-relax cycle response to a passing pulse.

Given the composition of the blood vessel wall as smooth muscle

with elastin and collagen fibers, its non-Hookean behavior is not

surprising. Accordingly, the predicted phase difference between

maximum pressure and maximum velocity at xi is not confirmed and

the construction of a model predicting U(ri) at xi which relates

c to the equation of motion is now extremely aifficult. Neverthe-

less, numerical solutions for volumetric flow rates have been deve-

loped assuming that the blood vessel is elastic but leaky and tap-

ered (Guier, 1980) or that it is impermeable but not tapered (Ger-

rard, 1982).

2. Geometric effects
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a. taper (cf. Walburn and Stein, 1981)

The inclusion of tapering in the Guier model is necessary be-

cause the aorta caliber tapers from 1.5 cm in the ascending aorta

to 0.9 cm in the abdominal aorta and R does not include a tapere

factor. Taper places a greater pressure stress on the wall and

helps create a higher pressure maximum in the pulse wave.

b. branching (cf. Walburn and Stein, 1980)

A more significant contributor to pulse wave amplification,

however, is the branching of blood vessels into daughter vessels

wherein flow dividers reflect pressure waves back into the oncom-

ing waves. Each daughter tube is a new entrance at the flow divi-

der where a blunt plug-like flow velocity profile is formed which

must travel 0.03 Re before it can fully develop a parabolic profile

again. Secondary flows--fluid movements not parallel with the tube

axis (e.g. vortex flow)--will develop at branchings if

P7 1.2 where

d i (12)
Am

with Ai and Am the cross-sectional area of each daughter branch

and the mother branch respectively (Caro, 1978). In addition, a

flow divider angle of more than 700 is likely to produce seconda-

ry flow.

c. curvature

When fluid is forced to follow a bend in a tube the fluid

particles near the outer curvature must travel farther than those

near the inner curvature to keep up with them. Since this accel-

eration requires an additional force and none exists, the flow ve-
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locity profile axis drifts outward. The smaller the tube radius

of curvature Rc , the greater the drifting tendency as indicated by

the non-dimensional parameter, the Dean number.

Du = R r0.5
Du  = Re (K-)0 (Ward-Smith, 1980) (13)

c

If r/Rc 110- 2 , Re is sufficient to describe the flow regime (la-
S-2

minar, turbulent, etc.) but at all Du values above 10 some sec-

ondary flow such as that shown in Figure 4 is predicted.

3. Viscous effects

At shear rates below 100 sec- I whole blood is markedly non-

Newtonian for normal hematocrits. In the microcirculation this

effect is significantly altered by the small vessel caliber but

in the macrocirculation the wall shear values, as shown in Table

3 insure Newtonian rheology near the wall. There is, however, an

inertial effect by which the RBC's tend to gather near the tube

axis. This tendency is called "tubular pinch" or the "Segre'-

Silberberg effect. Its influence on flow in the macrocirculation

is unknown. One may speculate, nevertheless, that while the 'free

plasma' layer near the wall has an inherently Newtonian rheology,

the central core of RBC's which is at a high hematocrit and exper-

iences lower shear may well exhibit non-Newtonian behavior which

could alter flow at tube bends and branches.

C. Microcirculation

Moving whole blood is classified in fluid mechanics as "multi-

phase flow". Usually only plasma and RBC's are considered in any
theological evaluation of blood so it is often analysed as a two-

phase flow system. As noted above, blood rheological properties
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FIGURE 4

Secondary flow created by tube bending. Adapted from
Talbot and Berger (1974).
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have been relatively ignored in fluid mechanical analyses of the

macrocirculation. One reason is the good agreement of flow velo-

city profiles with the Poiseuille model predictions--with some av-

eraging of the pressure pulse effects--by the time the blood reach-

es the abdominal aorta.

But in vessels of less than 300pm caliber, 8pm wide dispersed

phase particles with a volume fraction (hematocrit/100) of 0.48

can no longer be approximated as points in the fluid. Thus, while

pressure effects dominate macrocirculation modeling, viscous ef-

fects dominate microcirculation modeling; due in part to RBC-RBC

interaction and in part to RBC interaction with the tube wall

where its caliber is small enough to inhibit the Segre'-Silberberg

effect.

1. Viscous effects
a. bulk viscosity

In a two-phase flow system the viscosity of the total system

or bulk viscosity is the result of the interaction of the dispersed

phase particles with

(1) each other

(2) the continuous phase (e.g. plasma) and

(3) the wall.

Applied mathematicians analyzing multiphase flow are presently try-

ing to model each of these interactions but have not developed any-

thing useful to Physiologists beyond small improvements in the Ein-

stein equation for viscosity of suspensions such as that of Batch-

elor (1974)

= V(i + 2.5h + 7.6h2) (14)
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where lo is the continuous phase viscosity and h the volume frac-

tion. The dispersed phase modeled by this equation is an array of

hard spheres.

Interaction with the wall increases where RBCs moves into

vessels of decreasing caliber. No physiologically applicable mod-

el exists for this flow system, however, until the tube caliber

reaches 8pm or less. Then the wall shear, although quite high as

indicated in Table 3, is less than in the arterioles. The main

reason for the lower value of capillary wall shear is the non-ri-

gidity of the RBC's and the effect of lubrication which is aiscus-

sed under 'lubrication' below.

b. Fahreus-Lindqvist effect

Bulk viscosity of blood decreases in vessels of 300pm caliber

or less from 0.03p to about 0.02p with decrease in r. These meas-

urements were obtained by applying the Poiseuille model to observa-

tions of RBC velocities in vitro at known VP and r values. It is

believed this Fahreus-Lindqvist effect is due primarily to the

Fahreus effect (Skalak and Chien, 1981) wherein the hematocrit

falls in the smaller blood vessels from its value in the output

macrocirclulation (allowing the influence of the continuous phase

to increase) and returns to its original value upon entering the

input macrocirculation (venous system).

c. plasma skimming

A more dramatic viscosity difference aevelops in situ where

a vessel branches and almost pure plasma drains into the smaller

branch. As a result a dramatic decrease in viscosity takes place

in the small vessel while an increase takes place in the larger
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branch which has experienced a jump in hematocrit.

2. Geometric effects

a. branching

Progress in the development of flow models for the microcir-

culation has been slow not only because of the two-phase flow com-

plication but because there is so much branching in microvascular

beds that it has been difficult to detect the source and/or desti--

nation of flow viewed in a given segment. The beds are, of course,

three-dimensional and one may conclude that an observed flow in

one segment is due entirely to an observed tributary without be-

ing aware that there are tributaries above and/or below the plane

of view.

b. physiological control

Precapillaries and precapillary sphincters which are indica-

ted in Figure 5 interact via a feedback mechanism which is subject

to local metabolic control. The control process is outside the

limits of this review but the results, narrowing or closing off

of branches, change r and create shifts in the microcirculation

pattern. Thus, flow could be altered in any vessel under obser-

vation without the observer noting any geometric change in the

bed within the field of view.

c. change in shape of RBC's

RBC's some 8pm in diameter can flow through capillaries with

calibers as small as 2.8pm. The collagen/elastin ratio in capi-

lary endothelium is high enough to keep these smallest capillaries

from expanding any measureable amount to accomodate the RBC's they

transport. Consequently, the geometry of the RBC must change al-
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FIGURE 5

Microcirculatory bed adapted from Charm and Kurland (1974).
Blood pathways are not preset and choices depend upon localLi conditions, particularly those which determine the contractile
state of precapillary tubes, precapillary sphincters andij metarterioles.
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though the precise shape assumed is in some dispute (Bagge et al,

1980).

3. Pressure effects

a. pressure waves

Micropressure measuring devices such as those employed by

Lipowsky and Zweifach (1977) have detected pressure pulse waves

in the microcirculation. The rigidity of the microvasculature as

expressea in the uniformity of the pulse waves, however, precludes

any strong influence of wall aeformation on net flow velocity pro-

files such as occurs in the aorta.

b. lubrication

When an RBC squeezes into a capillary less than 8zm in cali-

ber it distorts but does not actually touch the wall because the

fluid covering the wall (the no-slip layer) becomes a lubrication

layer with a large radial fluid pressure which maintains a so-cal-

led lubrication gap of thickness b. As the RBC moves forward fluid

must move back in the lubrication layer to conserve fluid mass.

The interaction between the leak-back in the lubrication layer Qb'

the local pressure drop VPb across the layer resulting from the

piston-like movement U of the tight-fitting RBC and the geometry

of the layer is modeled by lubrication theory with K a dimensional

constant as

b3VP b KbU
Qb + 2 (15)

which has an interesting resemblence to the Blake model for ciliary

flow as may be perceived by examining (7) and will be more evident

in the ciliary flows section. The leakback described by this equa-
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tion fills in the space vacated by the translating RBC in a flow

pattern termeo "bolus flow". The interaction of bolus flow with

the trailing RbC is a critical factor in aetermining U. That is,

there is some separation distance for capillary RBC's at which U

is optimal. The value of U here, in any case, is smaller than a-

ny U0 calculated from the Poiseuille model because the model 'flu-

id' is now an RBC. Consequently, wall shear appears smaller in ca-

pillaries than in arterioles as shown in Table 3.

4. Solid mechanical effects

In order to complete the model for movement of RBC's through

the microcirculation, terms accounting for the solid mechanics or

elastic properties of this non-Hookean cell must be derived. Such

derivation is an active area of modeling at present (Skalak and

Chien, 1981). One can see a parallel between the need for a non-

hookean model for arterial walls and one for RBC's in order to

develop the complete flow model for each vessel.

D. Input macrocirculation

The flow patterns in the venous system deviate from the Poise-

uille model primarily because

(1) Skeletal muscle contractions are requred to maintain

flow and they are not in phase with heart pressure pulse waves

(2) Valves in veins prevent backflow except near the clo-

sure points and they are not in phase with heart pressure waves

(3) Veins are more collapsable than arteries and will

change shape in response to their lower internal pressures

The dominant flow limiting quantity in the heart and output

macrocirculation is pressure which is represented in (11). In the
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microcirculation it is viscosity as represented in (14). In the

input macrocirculation, geometry is the dominant modeling feature.

This is not to belittle geometry in the rest of the circulatory

4system. After all, Q varies as r while the other quantities are

first degree. But the diagnostic flow velocity profile varies

only as r2 and geometric changes are less dramatic in the pre-

venous systemic circulation.

I. Geometric effects

a. confluence

Where venules join to form veins ana veins join to form vena

cavae there is an entrance effect of meeting streams. Since the

axes of the net flow velocity profiles of the joining streams are

at first not in the center of the main tube, the mainstream pro-

file will look like a '3', gradually flattening out and eventual-

ly forming a single parabola. Laminar flow is expected, given the

relatively low Re and the slenderness of the tubes (see Table 3).

The minimum slenderness ratio required for flow development in,

for example, the inferior vena cava is 0.03x700 = 21 which is less

than the slenderness value shown in the table.

b. collapsability

In general veins have thinner walls (fw is less), less elas-

tin ana more collagen than arteries of equal caliber. Consequent-

ly they tend to be more flaccid. Where venous lumen pressure PL

is greater than or equal to interstitial hydrostatic pressure PI

the vessel retains its circular shape. But in the anterior ven-

ous branches of the upright individual and all veins being squeezed

by skeletal muscle or the abdominal-thoracic pump, PL 4 PI and the

vessel 'collapses' into an elliptical-to-dumbell cross-sectional
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shape. The shape depends, of course, on the magnitude of APIL

P I - PL' While it remains elliptical two flow velocity profiles

are required to Qefine the flow pattern extremes. For laminar flow

these are aefineo by

(1) the plane including and parallel with the major axis A

at all xi  2 21 VP (r2 - r.2 I

UA - (16a)

(2) the plane including and parallel with the minor axis a

at all xi

VP (r2 -

Ua a 1 (16b)

The volumetric flow would then be

3 r3
P rA a(17)

44 (r2 + ra2)

It is evident that in a circular tube where rA = raP (17) reduces

to (4).

Complications arise, however, when the length of the constric-

ted segment of Lc is too short for flow to become fully developed.

Where Re is high enough one could obtain values for Urm by applying

the Bernoulli form of the continuity equation

P1 1 = P2 U2 . (18)

But one cannot obtain a realistic flow velocity profile from this

relationship as U(r) - Urm i.e. there is only particle velocity

each at x positions 1 and 2 for the assumed frictionless fluid.

In short, the small compressed tube segment's slenderness ra-

tio and its lack of axisymmetry present serious difficulties for
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any fluid mechanics analysis. Shapiro (1977) in attempting to sim-

plify the problem assumed that the collapsed segment was static

and could be described by a "tube law" which relates segment cross-

sectional area A to APIL. The need for a "tube law" in venous

fluid mechanics should give one an appreciation of the difficulty

in modeling the more complicated segmental or peristaltic cons-

trictions to be discussed later; in these systems the 'collapsed'

segment is travelling.

No velocity profiles are generated by the Shapiro model but

two important parameters are presented which can be used to pre-

dict the general form of flow in a given collapsed vein.

(1) The speed index S = U /c where if

S 7 1, turbulence is likely
pSp 1 , choking (flow velocity falling to zero) is likely

Sp Z 1, laminar flow is likely

(2) The 'shock wave index' (our term)

d2f dfT
17 3 + CC ¢!-}/ (a---) (19)

TdiT (19)

where fT is a tube law function such as fT =1 - e-a " 5 which ap-

plies for thin-walled elastic tubes with aT = Ac/Ao Ac the col-

lapsed and A the uncollapsed tube cross-sectional area. If
0

7 7 0, pressure pulse wave amplitude increases and
wave valleys flatten

17 L 0, pressure pulse wave amplitude flattens and
wave valleys deepen

c. valves

Valves allow a number of veins, particularly those in the ex-

tremities to maintain flow against gravity. Consequently, where

the body is horizontal the influence of venous valves on flow is
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limitea to their roles as 'roughness' factors of the walls. In

contrast, venous flow velocity profiles developed from models which

include valve-gravity interactions will have to include a term re-

latinIgravity to interstitial pressure, usually of the form

P = PA + hv Tg (20)

where P is atmospheric pressure, h vertical distance below thePA hv

point at which PI = PA and g is acceleration due to gravity. There

are apparently no fluid mechanical venous models which include

valve effects on flow velocity profiles.

d. skeletal muscle compression

by increasing PI, skeletal muscle in cooperation with venous

valves acts as a pump auxillary to the heart. The assistance of

skeletal muscle is not necessary for the horizontal body but is a

prime factor in reducing blood pooling in the vertical body as in-

dicated in Figure 6. By forcing the veins to 'collapse', skeletal

muscle-pumps along a given vein create a kind of segmental cons-

triction pattern which, if measured in a subject walking at a re-

gular pace, may be a reasonable basis for constructing models which

have the form of segmentation with valves superposed. Skeletal

muscle venous pumps are an example of what we term "combination

pumps" wherein a pumping mechanism which is not strictly part of

the physiological tube in question has a significant affect on the

tube flow-generating force.

2. Pressure effects

The role of pressure in macrocirculatory input flow has been

refered to in the 'geometry' section but may be more explicitly

summarized here as being threefold:
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FIGURE 6

Effect of skeletal muscle contraction on venous flow.
A combination pump system. Pressures are measured in an
ankle vein of a subject who starts (at t=O) from and stops
(at t=36) at a motionless erect position. From Pollack
and Wood (1949).
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(1) Transmural pressure APIL determines the geometry (within

the constraints of vessel elasticity) of the vein.

(2) Given that net venous upstream pressures are below 20mm

Hg, one can see that flow becomes extremely 3ensitive to changes

in the axial pressure gradient VP. Thus just after the right at-

rium has emptied most of its contents into the right ventricle and

before atrial diastole, PL is at a minimum in the input chamber

and the vein-to-atrium downstream pressure gradient is increased

enough to cause a jump in flow. This 'pump-pull' effect is aug-

mented by a 'pump-push' effect from the left ventricle during ven-

tricular systole. Consequently, there are two U peaks in the ven-

ous system during the cardiac cycle.

(3) The form of the ventricular pulse must be considered sep-

arately from its ability to increase the the ventrical-to-vein

downstream pressure gradient. The influence of tube geometry and

elasticity on pulse wave amplitude and c0 as expressed in the Moens

-Korteweg equation has been discussed. There are some important

differences in the venous transmission of the wave. While reflec-

tion off flow dividers which is a dominant influence on pulse wave

amplitude in the arteries is absent in the veins, the collapsed

tube geometry, low-elastin wall composition and valve-based wall

roughness provide sufficient mechanisms for altering pulse wave am-

plitude. Unfortunately, as one might expect from our description

of the state of the art for the less complex output macrocircula-

tion, there do not appear to be any fluid mechanical models which

generate flow velocity profiles by relating c to U(r.) in the veins.
01

3. Viscous effects
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Viscous effects in the veins are relatively constant as is

the case in the larger arteries because vessel calibers are simi-

larly large. In addition, the non-Newtonian rheology of blood pro-

bably has less affect on confluent flows because the walls are 're-

ceding' radially. In collapsed tubes, however, where one might ex-

pect Newtonian rheology from high wall shear, there may be a suffi-

ciently small a (minor axis) to produce non-Newtonian effects.

Moreover, it is not clear how RBC's would migrate in these vessels.

Unfortunately, all collapsed or circular tube venous flow theoreti-

cal models developed thus far assume a constant viscosity.

V. Ciliary Flows

1. General

The main pump for pulsatile flow is upstream. In contrast,

ciliary tube flows are driven by numerous pumps, cilia, which are

distributed over the lumen epithelium. Ciliated tubes occur in a

variety of organs as indicated in Table 2. Unlike pulsatile flow

ciliated tubes may generate "external flows". External flows dif-

fer from internal flows in that they are either bounded by a com-

pressible fluid or at least half of the boundary parallel with U0

is too far away to measurably influence it. An example of an ex-

ternal ciliary flow tube is the trachea. The ciliary flow regime

is in the low R range at all times as indicated in Table 3 and alle

ten assumptions used in the d,.velopment of the Poisuielle model and

listed in section III apply to current ciliary flow models. Conse-

quently, all models presented are derived from some form of the

Stokes equation. There are two levels, however, at which the mod-

els must operate
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(1) Lach pump is a slenaer boay which moves a microvolume of

fluid by oscillating and also interacts with other pumps.

For this level flow may not be laminar but it is at a very

low Re ana the Stokes equation applies in the slender body

regime for Re _ .

(2) The aacitive effects of all the cilia in a field produce

flow which is assumed laminar and therefore predictable from

some form of the Poiseuille model.

In vertebrates cilia are generally 5-7 pm in length Lc and

0.2 Fm wide 2rc giving them a slenderness ratio, L c/2r c, of 25-35.

They are arranged in arrays of rows and columns, the latter paral-

lel to the flow axis as indicated in Figure 7. Cilia generate

flow by perioaically stroking in the downstream columnar direction

at least twice as fast as their upstream or "recovery" stroke.

Moreover, the aownstreat or "effective" stroke of tnis beat cycle

is relatively stiff with the cilium fully extended while the reco-

very stroke exhibits considerable bending as the cilium tip stays

relatively close to the epithelial surface.

Adjacent cilia in a row beat synchronously but those adjacent

in a column beat slightly out of phase in such a way that as each

cilium follows its neighbor to the maximum extension height, a wave

appears to propagate up the column, i.e. in the upstream direction.

The apparent wave is called a "metachronal wave" and the fact that

it moves opposite to the direction of the effective stroke classi-

fies it as an "antiplectic" metachronal wave. The metachronal wave

velocity cm is related to the beat frequency f by

cm = f A c  (21)
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FIGURE 7

Array of cilia or ciliary field (from Keller et al, 1975).
Columns run in the x direction with ciliary effective stroke
toward the right and antiplectic metachronal way propagated
toward the left. Rows run in the z direction to width LE with
synchronous ciliary beats. Sublayer thickness defined L in
the figure and one metachronal wavelength A defined by the
dashed line in the x direction. c
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where c is the metachronal wavelength.

The fluid mechanics of cilia has been reviewed in detail

(Blake and Sleigh, 1974; Brennen and Winet, 1977) and we shall

describe its main components.

a. Flow resulting from the motion of individual cilia

The large slenderness ratio and low Re of cilia allow us to

make some approximation about their cross-sectional geometry. We

assume that instead of a tapered cylinder, the cilium is a string

of spheres of radius rc which acts like a cylinder. During an in-

finitesimally small increment of time dt each sphere exerts a force

on the fluid equivalent to that predicted by Stokes Law:

Fsi =6 t Uci rc (22)

where Uci is the speed of the cilium sphere at position i. The

total force exerted by each cilium on the fluid during this time

increment is not merely the sum of all its F si's because the direc-

tion of each Fsi along the slender body must be included in the

summation process which is in fact an integration of the forces

distributed along the entire moving cilium. Accordingly, the mo-

tion of the entire cilium during dt must be defined. In addition,

we cannot ignore the influence of the epithelial wall on the mo-

tion imparted to the fluid by the beating cilium.

In terms of its location as part of a slender body, Hancock

(1953) defined a ciliary sphere (or point for purposes of integra-

tion) which generates Fsi as a "Stokeslet" so in order to calcu-

late the force exerted by a single cilium during dt one would have

to integrate all the Stokeslets along the entire cilium. Further-

more, in order to calculate the force exerted by the cilium during
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FIGURE 8

Two examples of mapping of ciliary motion through one beat cycle.
A. Stokeslet field or integrated stokeslet region of influence
mapped for the two extreme positions of the cilisary beat cycle
(from Blake, 1972). (a) the Stokeslet field near the cilium during
the effective stroke. (b) the field during the recovery stroke.
(c) the 'layers' of principle in luence during the ciliary beat
cycle for the effective stroke ( and for the recovery stroke
B. Computer-generated changes in ciliary form during one beat cycle
as modeled by Liron (1978) to compute the net stokeslet filed. L =
cilium length; x3 = height above epithelium; x1 = distance in cilia-

ry column direction.
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one beat cycle one would have to then follow the motion of each i

through this cycle and integrate all the changes in position until

all the dt's add up to one beat cycle period. An example of such

cycle mapping is shown in Figure 8.

Gray and Hancock (1953) simplified the difficulties that these

integrations presented by separating the directional components of

ciliary force exerted by each of n cylindrical segments of cilia

of length ds into

(a) a component tangent to the axial curvature of the segment

dF cT and

(b) a component normal to the axial curvature of the segment

dFcN*

These tangential and normal forces generate tangential and

normal fluid flow velocities, UT and UN according to:

dF = CUds or I dF
cT TT T = U (23a)

CT ds T

dFcN = CNUNds or 1 dF UCN  d = UN (23b)
C dsN

where C and C are velocity coefficients which contain viscosity

N T

terms and have a ratio CN/CT between 1.6 and 1.9.

The integration of 23ab has resulted in reasonably good predictions

of the motion of self-propelled slender bodies such as spermatozoa.

Primarily because the Gray and Hancock model assumes the slen-

der body to be of infinite length, however, it has not been useful

for modeling flow due to an array of cilia.

b. Flow resulting from the motion of ciliary fields

The Stokeslet force generated by a ciliary sphere decreases in
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influence from the surface of the cilium outward to Fcd* The dec-

rease pattern as measured in an "unbounded" fluid goes like

Fcd Fsi rc/d (24)

where d is distance from the cilium axis (It will be noted that on

this axis Fcd is infinite. This is why a Stokeslet is classified

as a "singular" force; i.e. it forms a "singularity" at d = 0).

The distance between ciliary bases (at i = 0) along a column is a-

bout 0.5 pm. The interciliary distances at other i's will vary

particularly at the tips but we can estimate the oruer of the in-

fluence of one cilium on another as O(Fcd/Fc ) = (0.2/0.5) x 100

= 40%, i.e. each cilium 'feels' about 40% of the Stokeslet value

at the surface of its columnar neighbor cilium.

Of course any cilium in an array interacts with more than one

neighbor. It is influenced by its other nearest columnar neighbor

and its two nearest row neighbors as is evident from Figure 7. As

may be appreciated, the integration of all these interactions and

the influence of the epithelial wall at which the no slip condi-

tion must apply is quite a bit more difficult than the problem

treatea by Gray and Hancock (1955).

Blake (1972) assumed an infinite array above which there is

no boundary and performea this integration of Stokeslets over a

cilium directly using the ingenious device of a Green's function

to solve the integral. The solution is, however, numerical ana,

consequently, not of a form into which Physiologists can 'plug in'

measured values. Moreover, although Blake's solution was a major

aavance, the matching up of local flow generated by each cilium

with resultant periciliary (within the sublayer between the cili-
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ary tips ana the epithelial base) flow was mathematically intract-

able so the model was limited to an expression for a "mean velocity

field" U(y), where y is height within the ciliary sublayer. The

numerical method averaged the contribution of each cilium to the

net fluid flow over a beat cycle.

In an attempt to recover any details lost by Blake's averag-

ing method, Keller et al (1975) developed a "Traction layer" model

which follows the force generation by individual interacting cilia

contained in one Ac . The authors assume the same boundary condi-

tions and integrate all the dt's, i.e the contributions of each of

the cilia in the defined field during one beat cycle and term the

results a "volume force". The periciliary flow field, termed an

"interaction velocity" field, was then obtained by numerical inte-

gration.

Accordingly, while both methods developed models for perici-

liary flow, they were not in forms amenable to testing by plugging

in physiological data. Moreover, their assumption of an unbounded

surrounding fluid makes them of limited application for predicting

tube or other internal flows.

2. Pressure effects

It may seem inconsistent that a flow velocity profile can be

generated from an integration of a distribution of Stokeslets in

space and time; particularly since there is no pressure term in

Stokes Law (22) or the Gray and Hancock model (23ab). The simple

explanation is that (22) is just one side of the Stokes equation

(5) with Fi = Fv which is balanced by the pressure gradient. But

the relationship Fv = Fp does not give us any expression for the
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form of the pressure stress and, therefore, cannot describe its

contribution to the flow velocity profile. Indeed, inclusion of

pressure terms in the Keller et al model would probably have in-

creased its complexity beyond the limits of the Stokes equation

because the terms would have been oscillatory, greatly increasing

the local Ref value and subsequent evaluation of cilia interactions.

The main reasons that in spite of the pressure term omission,

a flow velocity profile could be obtained by the Blake and Keller

et al models are that the

(1) fluid is assumed unbounded above

(2) flow velocity profile calculation extends very little be-

yond the sublayer

(3) ciliated surfaces modeled are self-propelling (non-station-

ary).

In the real world, of course, there are boundaries and at some point

the flow profile above the sublayer will have to be calculated.

For self-propelling bodies these corrections present few prob-

lems as long as the boundaries are reasonably far because the pene-

tration of the disturbance caused by the body falls off like a

Stokeslet. For stationary ciliated epithelium the unbounded solu-

tions apply if the overlying liquid is bounded by a gas and the side

boundaries are far enough apart. These fluid systems are, of course,

external flows and, consequently, exclude any stationary boundary

at which pressure generated by the additive effect of all cilia can

build up. The cilia of lung epithelium are commonly modeled as ex-

ternal flow generators but as we shall show there are circumstances

when they may generate internal flows, i.e. they are bounded in such
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a way as to allow pressure generated by the pump to build a gradient.

Internal flow ciliary systems may develop significant down-

stream pressures. Morris(1981) has obtained a measurement of 2.3

mm hg from the ciliated funnels of toad kidney. The most straight-

forward response to the need to include a pressure term in an in-

ternal flow ciliated system has been to impose a 'reasonable' pres-

sure gradient along the system flow axis. Then one simply super-

poses (adds together) the calculated flow due to the imposed gra-

aient ana the periciliary flow generated by the resistive force-

basea ciliary model to obtain a "matched" flow velocity profile.

We refer to pressure obtained in this manner as "implicit" pressure

because while no connection between it ana the cilia has been ce-

rived formally, it must exist if the internal cilia are pumping an

incompressible fluid and mass is conserved.

The most physiologically useful result of this approach has

been the Blake (1973) model for liquid pumping by a ciliated tube

whose velocity profile equation has been presented in (7). In this

model Blake matches the maximum fluid particle velocity generated

near the ciliary tip Um as computed from the sublayer model (Blake,

1972) with a Poiseuille flow profile generated by an implicit pres-

sure gradient which rises in the downstream direction. The attrac-

tion of this model rests with the relative ease with which a Phy-

siologist can plug in measured values for Urm and VP ana predict

the resultant flow velocity profile or U m ana U0 and predict VP

from the same model. A comparison of an appropriate form of the

quantitative model with measured flow in a ciliated channel (Win-

et ana Blake, 1980) is presented in Figure 9. The volumetric flow
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Comparison of data with model of Blake (1973) applied to a
ciliated channel. Flow velocity profile is obtained from
equation (26) and data points from a frog palate experimental
model (Winet and Blake, 1980a).
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rate for the tube model is given by

Ifr 2 Um Ifr 4 Vp
S= 2i -(25)

2 6

As is the case for equation (15) this model allows for cancella-

of flow due to VP by that due to U or vice versa. Thus, although

the source of these two quantities is different their interaction

may be expressed mathematically by similar models.

Recent attempts to obtain a explicit pressure term in the flow

velocity profile for ciliated tubes have been spearheaded by Liron

and his colleagues (Liron, 1978; Liron and Mochon, 1976; Liron and

Shahar, 1978) but no exact solutions (ones into which measured val-

ues may be plugged directly) have been obtained.

3. Viscous effects

a. Mucus
All ciliated epithelia reported thus far have been found to

contain periciliary glycoprotein which varies in concentration from

the less than 1% (w/V) in the brain ependyma to as much as 10% in

the non-ovulatory cervix. These mucin suspensions tend to disp-
lay highly non-Newtonian behavior at ciliary shear rates to con-

centrations at least as small as 1.7% (Winet, 1976). The rheolo-
gical effects are a function of concentration and relatively inde-

pendent of the source of mucin (McCall et al, 1978). Thus one may

directly apply mucin viscometric results from one organ or organ-

ism to another in developing experimental models.
There appear to be no models for internal ciliary tube flows

of non-Newtonian fluids although the experiments of Yates et al
(1980) to determine the ciliary shear stress on a sputum plug pro-

vide some useful aata for such a model. External mucociliary sys-

tems have been modeled assuming the mucus blanket to be a merely
more viscous Newtonian liquid, with recent versions stressing the

role of the penetration of ciliary tips into the mucus layer as a
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key to the propulsive mechanism (Blake and Winet, 1980; Yates et

al, 1980). But more recent results (Winet et al, 1982) suggest

that there exist mucus blankets which rest on a column of fluid

thicker than the ciliary sublayer. There is a model (Ross and Cor-

rsin, 1974) which contains these general features and includes a

viscoelastic term for the mucus. But this model does not address

periciliary flow.

If the mucus boundary is sufficiently rigid it may act as an

overlying wall, thereby converting an external to an internal flow

system. The physiological implications of an internal flow system

beneath the mucus blanket are significant. It has been demonstra-

ted that external cilia create sufficient stirring to reduce the

unstirred layer and enhance transmural transport (Nelson and Wright,

1974). It has also been shown that internal ciliary flow systems

show no local reflux if r is small enough (Winet and Blake, 1980).

Thus, a submucal periciliary flow system may exist in vivo which

would be analogous to capillary flow in coupling bulk and trans-

mural flows--i.e. a combination pump system.

b. Spermatozoa

The efferent ducts of the male accessory tract are lined with

cilia. So are the cervix, uterotubal junction and ampulla of the

female tract. While the latter tube also carries the ovum, we

shall not consider its transit as it is usually not treated as a

liquid. All of these tubes do, however, transport spermatozoa

which present two kinds of rheological problems depending upon

their motile state.

In the efferent ducts spermatozoa are not motile and the vis-
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cosity of their suspension may be modeled by an adaptation of the

Einstein equation similar to that for RBC's (Winet, 1980a). In con-

trast, spermatozoa in the female tract are self-propelling and while

there is evidence that they are oriented by the flow of the contin-

uous phase (Roberts, 1970) the contribution of their self-oscilla-

tion to suspension rheology is beyond current modeling methods.

4. Geometric effects

Ciliated tube geometry may deviate significantly from a cir-

cular cylinder and those that do not are not infinitely long. Ac-

cordingly, entrance and exit effects will have to be included in

the simplest realistic models while bends and branching will have

to be added for such tubes as efferent ducts and bronchioles; and

taper for the oviduct (Blake and Vann, 1982). Where cross-section-

al geometry is not circular as exemplified in Figure 10 some rath-

er complex functions of r. will have to be introduced.1

Two examples of geometric adaptations of the Blake (1973) mo-

del may serve as illustrations of geometric effects.

(1) Where a tube is replaced by a channel with all other boun-

daries much farther from the channel center that the ciliated epi-

thelium we have

)= Uml +Um 2 +RU2 2
U(ri ) 2 + Rci (Uml - Um2) -- P((r - L) - r2) (26)2 2

whereR = r L and U and U are differing Um's for eachwhr ci r -L ml Um2m
c

epithelium and 2VP(r - Lc)L

Q= 2LE(r L)(Ul + Ur 2) - cE (27)
E c l m231

where LE is the thickness of the channel (i.e. epithelium). If we

allow the open sides above and below the channel to be replaced by
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FIGURE 10

Ewe fallopian tube as example of the complex geometry which
can be assumed by ciliated tubes (from Hook and Hafez, 1968).
This is a cross secti.on of the isthmus. Average width of lumen
is about 100um. Reflux is unlikely in smaller tubes. im =
longitudinal smooth muscle layer; cm = circular smooth muscle
layer.
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rigid boundaries LE apart, a 'three-dimensional' channel is formed

and we have

(r- Lc) 2 VP (-1)ncos (ci(n+ )) cosh(?Rcj(n+ ))]U (r i ) 
=  24 1 -R 2  32-

(2n+l) cosh( i R (n+ ))

2(Uml+Um2 ) (-1) ncosh(%Ei (n+ ))cos(1jE.(n+ ))+ I Ri
n=O (2n+l)cosh(- (n+ ))

Ci

2(Uml-m2) (-1) sinh('tEi (n+ ))cos(lffR.(n+ ))

T.0 (2n+l) sinh(-- (n+ ))
n=ci

(28)

r. 2r. 2r.

where R r__ R 2r and Rj= 2r with r thewhr cj r-Lc ' i LE  LE
J LE LE

distance from the flow axis toward the non-ciliated (rigid) walls

and LE not only the epithelium thickness but the distance between

the two rigid walls and

U ml+Um2 (r-Lc ) 
2 VP 2(r-L ) 27 (r-L 20 tanh(5(rL C)(n+ ))

Q lm + c+ c
10 81 15 + -l'5  (2n+l) 5

n=0

16(Um +U m2) tanh(5ff(r-L 3(n+ ))
+ m m2C(29)

50ffT3  (2n+1)3

This model is due to Blake (personal communication) and one can ob-

tain reasonable accuracy carrying the series to n = 10.

In closing this section we should like to stress again one of
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the flow consequences of complex ciliated tissue geometries which

create regions where r is small. If one of these regions is coup-

led with a region of large r such as is suggested by the vessel

shown in Figure 10, a circulation will develop wherein reflux domi-

nates the larger lumen and liquid is returned in the smaller lumens.

This circulation has been suggested as a mechanism for spermatozoon

transit in the female tract (Winet, 1980b).

VI. Peristaltic/Segmental Flows

Tubes which propel liquids by constriction owe their deforma-

tion to the contraction of smooth muscle. This tissue is found in

a variety of tubes as indicated in Table 2. Its arrangement into

circular layers is the basis for tube constrictions. A large num-

ber of electromyographic measurements of circular smooth muscle

have been obtained from at least the GI and reproductive tracts

but detailed measurements of contractile patterns have been rare

and in no case have they been quantitatively related to flow. Mor-

eover, there are apparently no measurements of flow velocity pro-

files for any smooth muscle tube.

1. Geometric effects--Due to the change in vessel shape being the

basis for propulsion in these tubes, geometric effects are insep-

arable from kinematics (that aspect of physical analysis which des-

cribes motion without accounting for forces. Dynamic descriptions

such as F=ma account for forces.)

The main obstacle to modeling smooth muscle tubes is that they

combine the most complex dynamic qualities of pulsatile and ciliary

pumping. Their pumps change tube shape at least as much as does

cardiac muscle and their distribution, like ciliary systems, is all
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along the tube.

In addition the constriction pattern is often irregular in

form if not in time. For example, the constrictions may appear

to repeat at the same tube position xi forming a pendular wave

which along one longitudinal line in the wall (+) and its opposite

(-) (1800 around the lumen) takes on the form

r(x,t) = +(r + H1 (x,t)sinkx + H2 (x,t)coskx) (30)

where H1 (x,t) and H2 (x,t) are functions allowing for change in am-

plitude with time at x. from a sine wave to a cosine wave and k =

2T/;k. The pattern modeled by (30) is the classical segmentation

pattern described by Cannon (1911) and shown in its in vivo form

in Figure 11. Or the constrictions may propagate according to

r(x,t) = +(r + H sin(kx - &t)) (31)

where c = 2Trf, which is the travelling sine wave characteristic

of peristalsis modeling. Both of these kinematic models are high-

ly simplified since in vivo the waves

(1) may be singular or otherwise non-periodic in incidence

(2) may not be sinusoidal in geometry

(Macagno and Christensen, 1981). Thus, it is probably more reason-

able to think of these constriction movements as travelling sphinc-

ters.

The current state of smooth muscle tube modeling has not ad-

vanced sufficiently to generate exact solutions for wave forms

more complex than sine waves. Indeed, there have been very few

numerical solutions for tube motion beyond sinusoidal peristalsis

because of the difficulties presented by the high degree of tube

deformation. Among the non-sinusoidal models we may note that of
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FIGURE I1I

Segmentation in the dog jejunum. Arrows show direction of
flow of barium sulfate suspension as recorded by X-ray cine-
matography. Interval between successive tracings is one
second. From Davenport (1977).
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Macagno and Hung (1967) which attempts to model the propulsion of

a bolus in the form of a vortex doughnut (Singerman, 1974). These

equations, being numerical, are not in plug-in form.

Let us look closer at the tube deformation problem. In all

tube flow models we have examined in the present review, flow has

been one-dimensional, i.e. laminar or parallel with the tube axis.

Thus if one drew an imaginary line parallel with the tube axis--a

"streamline"--and could identify each fluid particle that entered

or left this line, they would find that the only particles that

did so were at the ends. If all the streamlines at one particular

distance rd from the axis were drawn (an infinite number in theory)

they would form an imaginary tube--a "stream tube"--concentric in-

side the flow tube. If fluid particles left their streamlines but

not their stream tubes we would still have laminar flow but now

two-dimensional. When tube shape deviates from a circular cylinder,

streamlines may deviate from being parallel with the flow axis but

as long as fluid particles do not change stream tubes, flow remains

laminar. Once fluid particles begin crossing stream tubes we have

secondary or unsteady flow to which we cannot apply the Poiseuille

model. At present fluid mechanical modeling of physiological tube

flows has produced no exact solutions beyond laminar models which

have been remarkably successful for tubes, like those of the pul-

satile (non-pump) and ciliary systems, whose walls do not signifi-

cantly change their geometries with time (Not even collapsed veins

have been so modeled while collapsing.)

Since propagating constrictions are the only smooth muscle

tube contraction patterns which have been fluid mechanically model-
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ed we shall concentrate on peristalsis. When fluid mechanicists

were drawn in large numbers to peristalsis modeling in the late

1960's by the problem of how bladder infections could spread to

the kidney when reverse peristalsis in the ureter does not normal-

ly occur (Lapides, 1976), they determined that the most tractable

model would eliminate either the tube wall motion or the particle

motion. Thus, if they could not assume a constant geometry like_

those modeling collapsed veins, they would try to avoid having to

account for both fluid particle and wall radial motions. This goal

is accomplished by establishing either the wall at some point as be-

ing the fixed reference frame--the Eulerian system--or each fluid

particle as being the fixed reference frame--the Lagrangian system.

Macagno and Christensen (1981) deal in considerable detail with this

approach. Unfortunately, the resulting models have not been

particularly useful for physiologists because of the lack of plug-

in results cited above. A sampling of the kinds of approaches engaged

in by these modelers is presented in Table 4. Nearly all of them

assume either a Re or a constriction too small. In addition, a

plemic has developed (Jaffrin and Shapiro, 1971; Yin and Fung, 1969)

about the technique of applying the two frames of reference.

The one model which has resulted in an exact solution is that

of Shen (1976; and Shih, 1978). He bypassed the entire Eulerian

-Lagrangian problem by choosing the lab frame as his fixed refer-

ence. Although complex in scope the Shen model, which is presen-

ted in equation (8), is ideal for plugging in quantitative measure-

ments. More recent complications of the Shen model have led to nu-

merical models (Shen et al, 1980) so we shall not deal with them.
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Since there have been no reported flow velocity profiles for peri-

staltic or segmental tubes there are no data points to test a plot

of (8). Accordingly, as an exercise in testing we have plotted the

fully integrated model,
2 2c A15 APr

-- + 02 _- 8(1- 2) - 1  (32)
(1+1.502) (1_02) 3.5 cp2(-+1.532 (1_ 2)_305 ]

where each symbol was described for (8), for an efferent duct with

two measured pressure gradients marked with vertical lines and a-

verage volumetric flow rates marked with horizontal lines. The

plot is shown in Figure 12. Unfortunately, peristaltic waves have

not been reported for these tubes which are extremely difficult to

access; although their electromyographic acitivity has recently been

measured (Talo, 1981). Efferent ducts and oviducts also carry ci-

lia and so qualify as combination pumps.

a. In vivo peristalsis

Peristalsis has been measured primarily in three tubes, the

ureter, esophagus and colon. It has also been observed in the small

bowel where it functions as a "housecleaner".

The ureter is about 30 cm long and 0.2 cm in caliber which

progresses from a stellate to a circular cross-sectional lumen ge-

ometry as the lumen distends (Lapides and Diokno, 1976). As with

other smooth muscle tubes the length is not constant due to the

contractility of the longitudinal smooth muscle layer. If it were

a rigid tube the ureter's slenderness ratio would be sufficient to

allow flow development (see Table 3) but the entrance length calcu-

lations are surely more difficult for peristaltic flow. The waves
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EFFERENT DUCT PERISTALTIC PUMPING FOR A GIVEN A~P
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FIGURE 12
Shen (1976) peristalsis model applied to an efferent duct. Average

* volumetric flow rate is plotted as a function of pressure drop per
wavelength for various values of 0. Range of measured values is indi-
cated by open circles.
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pass down the tube at about 3 cm/sec and there are rarely more than

two present (boyarsky and Weinberg, 1973). Other kinematic charac-

teristics of the flow are summarized in Table 3. The shape of the

uretral peristaltic wave is easily modeled by a single axisymet-

ric version of (31) (i.e. around the tube). The occlusion ratio 0

is about 1 (We use 0.96 in the Shen model because, being asympto-

tic, it is singular at i). The dilated region or bolus is about

5 cm long but the wave length is 6-9 cm including the 0 = 1 seg-

ments (boyarski and Weinberg, 1973). A typical Q value for the u-

reter has been hard to obtain in spite of the existence of numer-

ous cineradiographs primarily because the volume of stellate tis-

sue cannot be subtracted from the X-ray images. A value of Q =

0.02 cm 3/sec is not, in any case, considered abnormal (Sokeland

et al, 1973).

The esophagus is 25 cm long with a 2 cm caliber on the aver-

age. Propagation of liquid boluses occurs at an average of 4 cm/

sec with some variation along the tube (Vantrappen and hellemans,

1980). The vessel is flaccid while at rest but its inner geomet-

ry is sufficiently smooth that unlike the ureter, distension beyona

simple filling is not necessary to make it circular in cross-sec-

tion. Accordingly, it can be modeled as axisymmetric when carry-

ing a liquid bolus. The tube has true sphincters at both ends

which are coordinated by neural feedback loops. The upper or cri-

copharyngeal sphincter which is aided by skeletal muscle (Vantrap-

pen and hellemans, 1980) relaxes to accept the bolus and the gastro-

esophageal sphincter relaxes once the bolus is in the tube. As is

the case in the ureter, the esophageal segments before and after

60

"I-.



the bolus have 0 = 1. Also like the ureter, reverse peristalsis

has not been confirmed in the esophagus. In contrast to the ure-

ter, however, more than two boluses may exist in the tube simulta-

neously.

The colon is 150 cm long with a caliber averaging 4 cm. Its

resting shape has a side-view accordian-like appearance with undu-

lations called "haustra". Thus, this tube is not flat when empty.

There are sphincters at both ends of the colon, the ileocaecal

valve upstream and a series of sphincters downstream including one

composed of skeletal muscle which is usually constricted. Peris-

talsis, consequently, which occurs about 50% of the time in this

tube (Misiewicz, 1980), must usually push against a closed downs-

tream sphincter. Accordingly, a significant amount of reflux (ret-

ropulsion) takes place in the colon. The peristaltic waves travel

at about 2.5 cm/sec (Christensen, 1981). The existence of the haus-

tra has made radiographic measurements of mass transit difficult,

inhibiting the development of peristaltic models for the colon; how-

ever that of Picouloglou et al (1973) should be noted in passing.

We should also note recent measurements of peristalsis in experi-

mental models (Pescatori et al, 1980).

The small bowel normally exhibits peristalsis less than 5% of

the time, using it to clear out chyme after processing, in response

to a new meal or during phase II of the 1.5 hour cycle followed by

the fasting human gut. Except for studies of abnormal episodes (e.

g. diarrhea), small bowel peristalsis has not drawn much interest.

Those modeling it, however, may have to be aware of longitudinal

folds or rugae and the villi which line the lumen. These slender
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bodies about 0.1 cm long and 0.02 cm wide oscillate at about 0.05

Hz and may contribute to wall "roughness" which would affect any

boundary layer where flow is at high R.e The small bowel also has

numerous bends along its 640 cm length.

The stomach exhibits waves which appear peristaltic but it

has such a small slenderness ratio and there is so much variation

in the wave form between the antrum and fundus that it can hardly

be called a tube in our sense. Moreover, it spends much of its

time with the pylorus and gastroesophageal sphincter closed; gen-

erating considerable reflux. The uterus exhibits similar behavior

giving these two vessels the most complex fluid flow of all body

vessels.

b. segmentation

There is no apparent difference in relevant anatomy between

tubes which propagate circular smooth muscle-caused constrictions

over much of their length and those which do not. Thus, the lat-

ter seem to 'prefer' non-propagation. We arbitrarily classify a

propagated constriction as peristalsis if it moves at least 2r.

All others we place in the 'segmentation' category. There are

apparently no quantitative kinematic descriptions of segmentation

in non-digestive tubes although we should remark in passing that

the oviduct appears to be the first which will break this ignor-

ance barrier (Verdugo et al, 1980).

The small bowel tapers in caliber from 3.8 cm at the duoaen-

um to 2.4 cm near the ileocaecal valve as it follows its 640 cm

tortuous course. As indicated above the inner wall has a rough-

ness due to villi and folds. The classic description of segmenta-
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tion (Cannon, 1911) still holds although there have been refine-

ments. The pendular pinching off which looks like shifting aneur-

isms oscillates at about 0.20 Hz in the duodenum. Oscillation fre-

quencies then follow an aboral gradient--which is not strictly lin-

ear--down to about 0.16 Hz in the terminal ileum (Davenport, 1977)

as shown in Table 3. While the constrictions do not propagate as

peristaltic waves they do display an aboral 'shift' which results

in a slow migration of the segmenting region up to 10 cm in the

duodenum (Engstrom et al, 1979) and 15 cm in the rest of the small

bowel. The speed of this migration also follows an aboral gradient

from about 0.12 cm/sec in the duodenum to 0.025 cm/sec in the ile-

um (Grivel and Ruckebusch, 1972). Volumetric flow rates during

segmentation also appear to follow a gradient from 2.1 x 10
- 2 cm3

/sec in the jejunum to 8.3 x 10- 3 cr; 3/sec in the ileum.

Unfortunately, all the measurements cited in the last parag-

raph were not obtained from the same subjects. The unsteadiness

of flow due to segmental contractions is certainly sufficient to

prohibit lumping together of data. Moreover, there are in vivo

variations of length of contraction and frequency at the same site

(Weisbrodt, 1981) which make a Q predicted from just one pattern

of segmentation of questionable applicability. From these consi-

derations one would expect theoretical fluid mechanical models for

segmental flows to be hard to come by and there are apparently none.

But stochastic (statistical) models seeking to obtain at least a

numerical form for the kinematics of small bowel motions are being

developed, particularly by Singerman et al (1975) and Bertuzzi et

al (1978). A related model has been developed for oviductal con-
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traction patterns by Verdugo et al (1980).

2. Pressure effects

a. peristalsis

Pressures at the ends of peristaltic tubes are often indepen-

dent of those produced by the propagating wave. In the ureter, an

increase in urine formation which is linked to an increase in re-

nal blood pressure causes an increase in renal pelvis volume. The

reaction of renal pelvis smooth muscle to this volume increase, re-

nal systole, generates a pressure increase at the proximal ureter

of 5 - 10 mm Hg which stimulates the uretral peristaltic wave. The

peristaltic wave pressure is characteristically about 15 mm Hg (Boy-

arsky and Weinberg, 1973), dropping to zero on each side of the ur-

ine bolus. Inserting these values and kinematic data cited above

into the Shen (1976) model yields a Q = 0.22 cm 3/sec assuming a

= 0.96. This Q is larger than the 0.02 cm 3/sec cited above but

falls well within the range of "spurts" into the bladder reported

by Boyarsky and Weinberg (1973). Calculations from their data give

a range of 0.007 L Q k 0.5 cm 3/sec. In any case, small changes in

0, without reducing it below 0.90 will yield model values over the

entire Boyarsky and Weinberg range which includes the Sokeland et

al measurement. Uretral discharge into the bladder will not occur,

however, if bladder pressure is too high. Reflux from the bladder

is prevented by a "flap valve", the ureterovesical valve (Lapides,

1976). The volume of fluid in the renal pelvis and bladder also

affects pressure via its response to gravity, flow being aided most

while the subject is vertical. These relationships will have to

be included in any model of uretral flow which includes end condi-
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tions.

The pattern for initiation of peristalsis and pressure trans-

mission in the esophagus is similar to that in the ureter although

specific values differ. In this tube the lower valve is a sphinc-

ter instead of a flap valve. Also, deguttation (swallowing) creates

highly variable entrance pressures. In particular the pharyngeal

pressure wave hits the entrance of the esophagus at the cricopha-

rynx with a pressure wave up to 6 mm hg. Once the collapsed eso-

phagus expanas to accomodate the bolus it propagates a peristaltic

wave at about 2 mm Hg (henderson, 1980). Although the wave velo-

city averages 4 cm/sec it moves faster at the oral end because the

first third of the tube is surrounded by skeletal muscle which con-

tracts faster than smooth muscle. Another influence on lumen pres-

sure is the diaphragm which controls thoracic cavity (the body cavi-

ty surrounding the esophagus) pressures and can create a consider-

able transluminal gradient. A rather delicate balance exists bet-

ween the lumen pressures of the esophagus, gastroesophageal junc-

tion, stomach and thoracic cavity (Henaerson, 1980) as shown in Fi-

gure 13. Thus, tube end conaitions are a major factor in aetermin-

ing flow in the esophagus.

Another parallel between esophageal and uretral flow is the

importance of gravity in determining net fluid motion. Liquids

will usually precede their peristaltic wave to the stomach in an

upright subject while solids are merely aided in their descent.

Pressure in the colon has been measured in vivo but not at

specific sites along the tube and not in conjunction with peris-

taltic wave observations. The common form of manometry is a bal-
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stomach esophagus

10[ stomach resp. prese inversion

0 point esophagus

0 10 20 resp.

seconds

FIGURE 13

Pressures in the lumen of the lower (gastro-) esophageal
junction during peristalsis resulting from the interaction
of gastric, esophageal and thoracic pressures. PIP is a
pressure inversion point resulting from negative thoracic
pressure during inspiration. From Henderson (1980).

66

L A-,



loon attached to a manometer. As evaluated by Christensen (1981)

these colonic pressure measurements are of questionable reliabili-

ty.

b. segmentation

Pressure measurements in the small bowel have progressed be-

yond luminal manometry in two directions. First, pressure trans-

ducers have been placed in vivo at intervals along the tube to give

a much clearer picture of pressure distribution than luminal baloons

can. Their measurements have shown that pressure changes may be

limited to segments less than 2 cm in length (Weisbrodt, 1981).

Pressures within a segmentation bulge may be as high as 50 mm Hg.

As is the case for other smooth muscle tubes, the exit and entrance

conditions determine the fluid content of the small bowel which is

collapsed when not transporting chyme. Chyme enters the oral end

of the small bowel through the pyloris, a long constriction 'valve'

at pressures over 50 mm Hg. It leaves the 640 cm vessel to enter

the large bowel through the ileocaecal junction at about 20 mm Hg.

There is some disagreement regarding whether the junction should

be considered a sphincter or valve (Weisbrodt, 1981). Second, the

net pressure generation by a segment of small bowel is measured ex

vivem by hooking up the vessel with fluid-filled tubes and deter-

mining the work performed moving the fluid against gravity (Weems,

1981; Weems and Seygal, 1980, 1981). Weems and Seygal (1981) found

that 17 cm lengths of small bowel were capable of performing up to

9 x 104 dyne-cm of work. Given the length of the small bowel and

the difficulty of keeping track of all the contractions at inter-

vals at least as small as 2 cm (consider 321 chronically implanted
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transducers), the ex vivem approach may be the most practical ex-

perimental model for testing fluid mechanical models.

3. Viscous effects

The restriction of most peristalsis models to the ureter is

based in part on urine being a Newtonian fluid of viscosity 0.007

poise. In contrast the reproductive tracts move a non-Newtonian

suspension of sperm and the female and GI tracts are lined with mu-

cus. The stomach in particular has a 70% (w/V) mucus coating. In

addition chyme and faeces are both highly non-Newtonian, even with-

out the mucus coating they pick up from the tract walls. Notwith-

standing these obstacles, colonic propulsion of faeces has been mo-

deled numerically by Picologlou et al (1973) and Patel et al (1973)

who represented faeces as a power law fluid. Even the water-like

boluses in the esophagus cannot be considered strictly Newtonian

as they usually trap some air during swallowing and tend to pick

up strands of mucus as a result of mixing in the cricopharyngeal

region.

The effect of mucus on boundary conditions must also be add-

ressed by any complete model of smooth muscle tube flow. This vis-

coelastic fluid may fill-in regions of potential roughness thereby

aiding 'slip'.

4. Longitudinal muscle

We should not leave the subject of smooth muscle tubes with-

out considering the role of the longitudinal muscle layer in the

kinematics and dynamics of the tube. Contraction of this muscle

can result in a 75% tube shortening. However, there is no basis

for expecting all the longitudinal smooth muscle fibers at a gi-
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ven xi to shorten or relax simultaneously resulting in an axisym-

metric event. Consequently, the tube may bend in addition to any

overall change in length. Given the relative slowness of these

changes as compared with peristalsis or segmentation, the longitu-

dinal muscle effects would probably be of second order importance

(Macagno et al, 1975).

VII. Combination Pumps

When two or more of the three classes of physiological flow

pumps combine to generate flow in a particular tube the analysis

of the flow becomes more difficult. The difficulties are somewhat

overcome, however, if one can simply combine the two pump models.

The reader may predict from our previous revelation of the limited

applicability of the three pump models showcased, that few attempts

have been made to fluid mechanically model combination pumps; and

for the most part this prediction is borne out. In the brief dis-

cussion to follow we shall present some examples of combination 3pumps

including two which have been modeled fluid mechanically.

A. Pulsatile-skeletal flow propulsion

This combination works to aid input macrocirculation as des-

cribed previously. The dominant random feature of the system which

confounds modeling is the lack of phase matching between the ske-

letal and heart muscle contractions. Thus, valves are needed to

help maintain the flow. There do not appear to be any exact quan-

titative models for this flow.

B. Skeletal-Peristaltic/Segmental flow propulsion

The esophagus is the prime example of this pump combination

which features skeletal muscle as the main flow generator in the
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upper third of the tube. The main components of this system have

already been discussed. There does not appear to be any interest

in modeling such flows, but tubes with skeletal muscle sphincters,

such as the colon are attracting attention because of their influ-

ence on pressure patterns upstream.

C. Ciliary-Peristaltic/Segmental flow propulsion

This combination pump appears almost exclusively in the rep-

roductive tracts (It may be said to exist to a limited extent in

the lungs. One could make the same statement with regard to a ske-

letal muscle(diaphragm)-ciliary combination.). In the female the

two pumps occur in the cervix, uterus and oviduct while in the male

they combine only in the efferent ducts. We have modeled the lat-

ter (Winet, 1980a) by superposing the Shen (1976) and Blake (1973)

equations. The model must be considered a first approximation be-

cause peristalsis has not been observed in these tubes although the

electrical activity associated with contractions has been measured

(Talo, 1981). Moreover, if peristalsis does exist in the male,

ducts, the value of 4 would have to be small enough to allow such

an exercise in linear manipulation as superposition. The results

of the cilio-peristaltic model are presented in Figure 14.

D. Peristaltic/Segmental-Pulsatile flow propulsion

This combination pump is one example of a widespread phenome-

non. Any contractile tissue creates internal pressures which must

alter its own blood supply at least momentarily. The constriction

of coronary vessels by heart contractions is a well-known occurance.

In the small bowel where tonic contractions can last up to 8 min-

utes (Weisbrodt, 1981) the effect on local circulation may be sig-
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nificant if it can be shown that the pressures involved are large

enough. Swabb et al (1982) have found such an effect after rais-

ing intraluminal pressures in an ex vivem small intestine prepara-

tion to values well within the physiological range. They also

found increases in secretion into and filtration out of the lumen.

The feedback scheme proposed by these workers for the entire set

of interactions is presented in Figure 15. A fluid mechanical mo-

del is the next logical step.

E. Pulsatile-Filtration flow propulsion

We have not dealt with convective flow through membranes be-

cause the tubes or pores do not have a clearly defined geometry.

Filtration and its carrier version solvent drag, nonetheless are

convective processes which are part of the most completely model-

ed combination pump. The solvent flow version was dereived by

Starling, demonstrated by Landis and related to the fluid mechani-

cal transport of solutes by Katchalsky-Curran (Lassen and Perl,

1979). The Katchalsky-Curran model which describes the interac-

tion of pulsatile and oncotic pressures to bring about flux in a

porous tube like a capillary is illustrated in Figure 16.
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FLUID TRANSPORT THROUGH PORES IN
CAPILLARY WALL

"t
J( __1x) - Tz
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FIGURE 16

A combination pump linking pulsatile and filtration flows.
The quantitative model describing transmural flux at a
point x along the porous tube (e.g. capillary) is an exten-
sion of the Starling solvent flux equation to include solute
flux:

1 ( )
j (x) = W(xlRTAC(x) + - jv(X) (C(X) + CI (X)) (1 - 3 (X)

where

w(x) = membrane permeability coefficient = SAC(x) when Jv(X) = 0

S = area of membrane involved
AC(x) = transmural solute concentration difference = C - C1 at x

R = gas constant
T = temperature

2js (x)

a (x) = solvent drag coeffcient = 1 - C + ) (when AC(x) = 0
V (o0()+ 1 CX))j C x)

)v(X) = -L (x) I (p (x) - p ) - a (x) pr X) - i+)]

where 4
R (x)

L (x) filtration coefficient (hydraulic permeability) at x, =
p
R (x) pore radius at x
p
£(x) = pore length at x
p(x) = plasma hydrostatic pressure at x
p a interstitial .

(x) = plasma oncotic pressure at x

T = interstitial p(X) -

a (x) reflection coefficient of solute at x, =s RTtAC (x)
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SYMBOLS

a tube caliber at constriction

A tube cross-sectional area

c peristaltic wave propagation velocity

cm metachronal wave propagation velocity

co  pressure pulse wave velocity

CN velocity coefficient normal to curvature of cilium axis

CT velocity coefficient tangential to curvature of cilium axis

Du Dean number

E Young's modulus

f frequency of pump oscillations

fT tube law function

f(ri) any function describing geometry only

F force

F force due to gravityg
Fp force due to pressure

F Stokeslet or point force, a fundamental singularity of Stokes
flow

Fsi Stokeslet at position i

F force due to viscosityv

h volume fraction

hv vertical distance relative to gravity

h amplitude

i a whole number representing any one of a number of position

k wave constant 2rt/.

K generally term for a proportionality constant

L length

Lc cilium length

L epithelium width in the direction of ciliary rows

m mass

M shock wave index

P pressure

P1  interstitial pressure

PL tube lumen pressure
Q volumetric flow rate
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Qb volumetric flow rate in lubrication layer
r tube lumen radius or one-half channel width
r radius of ciliumC

ri  distance from tube axis at position i

R radius of curvature of tube axisc
R Reynolds number
Ref oscillatory Reynolds number

Ret translatory Reynolds number
Sp speed index

Sr Strouhal number

U fluid particle velocity

U average fluid particle velocity

Uci speed at position i of the cilium

UN fluid particle velocity component normal to curvature of
cilium axis

U(ri) fluid particle velocity at position i along the tube radius

Um  maximum fluid particle velocity

Urml maximum fluid particle velocity at one of two ciliated surfaces
Um2  maximum fluid particle velocity at one of two ciliated surfaces

UT fluid particle velocity component tangent to curvature of
cilium axis

UT average particle velocity over one oscillatory period

U r particle velocity in the radial direction

Uxi axial particle velocity at xi

Uxi (t) axial particle velocity at xi as a function of time
U0  axial fluid particle velocity at the tube axis
xi  any one of numerous positions i in the x direction

y distance from the wall in Cartesian coordinates
CK Womersley parameter

o(T collapsed tube area ratio

p density

hP pressure drop
hw wall thickness

VP pressure gradient

viscous coefficient

o0 continuous phase viscosity of a multiphase system
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Tr tension

c metachronal wavelength
X peristaltic wavelength

w angular velocity
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